24 research outputs found

    Development of an application for diagnosis, monitoring and rehabilitation of neurodegenerative diseases

    Get PDF
    The progress of healthcare over the last years led to an aging of the world population, increasing the prevalence of age-related diseases in the society, mainly neurodegenerative diseases. These pathologies currently affect more than 30 million people worldwide, and there is currently no cure for them. The high costs experienced by patients and their families are largely due to the individual monitoring performed by technicians. New technologies are providing alternatives for monitoring, diagnosis and rehabilitation of individuals with these diseases. This project includes the development of a web application which allows patients with neurodegenerative diseases to be monitored with less invasion and costs, enabling greater adherence. The application follows several examples from the literature for the construction of games, includes diagnostic assessments used in the medical field and promotes its use through gamification techniques. The construction of the web server used the Python language and the Flask framework because of the availability of useful modules, large supporting community and scalability. The software was specially designed for people with Parkinson’s disease, featuring a simple navigation between menus and an easy-to-use interface. The web application was named "Mentalist". The development of the application was followed by professional neurologists and the results obtained were guided by clinicians’ practice. According to these experts, the developed functionalities cover the most important aspects of diagnosis, monitoring and rehabilitation, making it a tool of high importance and applicability in daily clinical practiceA melhoria das condições de vida e dos cuidados de saúde nos últimos anos tem originado um envelhecimento da população mundial, aumentando a prevalência de doenças relacionadas com a idade. Neste grupo de doenças destacam-se as doenças neurodegenerativas, que afetam mais de 30 milhões de pessoas e não têm, atualmente, cura. Os elevados custos experienciados pelos pacientes e pelas suas famílias devem-se, em grande parte, ao acompanhamento individual realizado por técnicos. Novas tecnologias têm possibilitado alternativas para o acompanhamento, diagnóstico e reabilitação de indivíduos com estas doenças. Este projeto inclui o desenvolvimento de uma aplicação web que permite a monitorização de pacientes com menos invasão e custos, proporcionando uma maior adesão. A aplicação segue exemplos da literatura para a construção dos jogos, inclui questionários de diagnóstico utilizados no ramo médico e promove a sua utilização através de técnicas de gamificação. Foi utilizada a linguagem Python e o framework Flask para a construção do servidor devido à existência de módulos úteis, grande comunidade de desenvolvedores e escalabilidade. O software foi desenvolvido especialmente para pacientes com a doença de Parkinson, apresentando uma navegação simples entre menus e uma interface fácil de usar. A aplicação web foi denominada "Mentalist". O desenvolvimento da aplicação foi seguido por neurologistas profissionais e os resultados obtidos foram guiados pela experiência dos clínicos. De acordo com estes especialistas, as funcionalidades desenvolvidas contemplam os principais aspetos relativos ao diagnóstico, monitorização e reabilitação, tornando-a num instrumento de grande importância e aplicabilidade na prática clínica diári

    Yellow Fever 17DD Vaccine Virus Infection Causes Detectable Changes in Chicken Embryos

    No full text
    Submitted by sandra infurna ([email protected]) on 2016-05-24T14:46:38Z No. of bitstreams: 1 barbara_oliveira_etal_IOC_2015.PDF: 23209973 bytes, checksum: effc89d2bc8960bf65b9af114d5e8468 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-06-02T13:08:57Z (GMT) No. of bitstreams: 1 barbara_oliveira_etal_IOC_2015.PDF: 23209973 bytes, checksum: effc89d2bc8960bf65b9af114d5e8468 (MD5)Made available in DSpace on 2016-06-02T13:08:57Z (GMT). No. of bitstreams: 1 barbara_oliveira_etal_IOC_2015.PDF: 23209973 bytes, checksum: effc89d2bc8960bf65b9af114d5e8468 (MD5) Previous issue date: 2015Made available in DSpace on 2016-06-03T12:34:20Z (GMT). No. of bitstreams: 2 barbara_oliveira_etal_IOC_2015.PDF: 23209973 bytes, checksum: effc89d2bc8960bf65b9af114d5e8468 (MD5) license.txt: 2991 bytes, checksum: 5a560609d32a3863062d77ff32785d58 (MD5) Previous issue date: 2015Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil / Universidade Federal do Estado do Rio de Janeiro. UNIRIO. Rio de Janeiro, BrazilFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system

    Kinetic Study of Yellow Fever 17DD Viral Infection in Gallus gallus domesticus Embryos

    No full text
    Submitted by sandra infurna ([email protected]) on 2016-06-23T19:15:34Z No. of bitstreams: 1 pedropaulo_manso_etal_IOC_2016.PDF: 3837298 bytes, checksum: 6c380180580b1760d8c32cb01f332b2c (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-06-23T19:27:36Z (GMT) No. of bitstreams: 1 pedropaulo_manso_etal_IOC_2016.PDF: 3837298 bytes, checksum: 6c380180580b1760d8c32cb01f332b2c (MD5)Made available in DSpace on 2016-06-23T19:27:36Z (GMT). No. of bitstreams: 1 pedropaulo_manso_etal_IOC_2016.PDF: 3837298 bytes, checksum: 6c380180580b1760d8c32cb01f332b2c (MD5) Previous issue date: 2016Submitted by Angelo Silva ([email protected]) on 2016-07-07T11:16:48Z No. of bitstreams: 3 pedropaulo_manso_etal_IOC_2016.PDF.txt: 41790 bytes, checksum: 34550c22d039d8923094561748811b01 (MD5) pedropaulo_manso_etal_IOC_2016.PDF: 3837298 bytes, checksum: 6c380180580b1760d8c32cb01f332b2c (MD5) license.txt: 2991 bytes, checksum: 5a560609d32a3863062d77ff32785d58 (MD5)Approved for entry into archive by sandra infurna ([email protected]) on 2016-07-07T12:00:32Z (GMT) No. of bitstreams: 3 license.txt: 2991 bytes, checksum: 5a560609d32a3863062d77ff32785d58 (MD5) pedropaulo_manso_etal_IOC_2016.PDF: 3837298 bytes, checksum: 6c380180580b1760d8c32cb01f332b2c (MD5) pedropaulo_manso_etal_IOC_2016.PDF.txt: 41790 bytes, checksum: 34550c22d039d8923094561748811b01 (MD5)Made available in DSpace on 2016-07-07T12:00:32Z (GMT). No. of bitstreams: 3 license.txt: 2991 bytes, checksum: 5a560609d32a3863062d77ff32785d58 (MD5) pedropaulo_manso_etal_IOC_2016.PDF: 3837298 bytes, checksum: 6c380180580b1760d8c32cb01f332b2c (MD5) pedropaulo_manso_etal_IOC_2016.PDF.txt: 41790 bytes, checksum: 34550c22d039d8923094561748811b01 (MD5) Previous issue date: 2016Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil / Universidade Federal do Estado do Rio de Janeiro. UNIRIO. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Instituto de Tecnologia em Imunobiológicos. Laboratório de Tecnologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Biologia Molecular de Flavivírus. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Patologia. Rio de Janeiro, RJ, Brasil.Yellow fever continues to be an important epidemiological problem in Africa and South America even though the disease can be controlled by vaccination. The vaccine has been produced since 1937 and is based on YFV 17DD chicken embryo infection. However, little is known about the histopathological background of virus infection and replication in this model. Here we show by morphological and molecular methods (brightfield and confocal microscopies, immunofluorescence, nested-PCR and sequencing) the kinetics of YFV 17DD infection in chicken embryos with 9 days of development, encompassing 24 to 96 hours post infection. Our principal findings indicate that the main cells involved in virus production are myoblasts with a mesenchymal shape, which also are the first cells to express virus proteins in Gallus gallus embryos at 48 hours after infection. At 72 hours post infection, we observed an increase of infected cells in embryos. Many sites are thus affected in the infection sequence, especially the skeletal muscle. We were also able to confirm an increase of nervous system infection at 96 hours post infection. Our data contribute to the comprehension of the pathogenesis of YF 17DD virus infection in Gallus gallus embryos

    Nervous system of <i>Gallus gallus domesticus</i> at 72 hpi with yellow fever 17DD virus.

    No full text
    <p>(A) Brain section presenting some infected neurons and glial cells; (B) spinal cord infected neurons; (C) one neuron of the brain showing perinuclear thickening and vesicles dispersed throughout the cytoplasm; (D) infected fibroblastoid cells along the meninges. Yellow fever virus protein detection in green and nuclei stained with DAPI in blue.</p

    Heart muscular tissue of <i>Gallus gallus domesticus</i> at 72 hpi with yellow fever 17DD virus.

    No full text
    <p>(A) Infected heart muscle cells; (B) desmin positive heart muscle cells showing perinuclear virus protein distribution and striated pattern compatible with sarcoplasmic virus protein distribution. Yellow fever viral antigen detection in green, nuclei stained with DAPI in blue and desmin in red.</p

    Detection of viral genomic RNA in YF 17DD-infected chicken embryos.

    No full text
    <p>The amplicons generated by Nested-PCR were analyzed by 2% agarose gel electrophoresis. The lanes correspond to the following specimens: (1) and (2)—head; (3) and (4)—legs; (5) and (6)—wings; from (7) to (14)—trunks; (15) and (16)—vitelline membrane; (17) and (18)—chorioallantoic membrane; from (19) to (22)—negative control (water-inoculated animals). Even-numbered lanes indicate samples submitted to amplification of genomic RNA whereas odd-numbered lanes indicate samples submitted to amplification of the replicative intermediate RNA. The molecular length markers are indicated on the left of the figure. The black arrow indicates the 156bp amplicon obtained from the amplification of YF 17D RNA.</p
    corecore